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Abstract. This paper presents a numerical method based on neural network, for solving the Lane-Emden equations 
singular initial value problems. The numerical solution is given for integer case and non integer case. The non integer 
case is taken in the sense of Riemann-Liouville operators. 
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INTRODUCTION 

The theory of singular boundary value problems 
has become an important area of investigation in the 
past three decades (see [1-5]). One of the equations 
describing this type is the Lane-Emden equation. The 
Lane-Emden type equation was first published by 
Jonathan Homer Lane in 1870 [6] and further explored 
in detail by Emden [7] and has significant applications, 
is a second- order ordinary differential equation with 
an arbitrary index, known as the polytropic index, 
involved in one of its terms. The Lane-Emden 
equation describes a variety of phenomena in physics 
and astrophysics, including aspects of stellar structure, 
the thermal history of a spherical cloud of gas, 
isothermal gas spheres, and thermionic currents [8]. 

Solving the Lane-Emden problem, as well as other 
various linear and nonlinear singular initial value 
problems in quantum mechanics and astrophysics, is 
numerically challenging because of the singularity 
behavior at the origin. The approximate solutions to 
the Lane-Emden equation were given by homotopy 
perturbation method [9], variational iteration method 
[10], and Sinc-Collocation method [11], an implicit 
series solution [12]. Recently, Parand et. al [13] have 
proposed an approximation algorithm for the solution 
of the nonlinear Lane-Emden type equation using 

Hermite functions collocation method. Moreover, 
Adibi and Rismani [14] have introduced a modified 
Legendre-spectral method. Finally, Bhrawy and Alofi 
[15] have imposed a Jacobi-Gauss collocation method 
for solving nonlinear Lane-Emden type equations. 

Lane-Emden equations have the following form  
�′′ (�) + �

� �′ (�) + �(�, �) = �(�),   
                0 < � ≤ 1, � ≥ 0 (1) 

 with the initial condition  
�(0) = 
,    �′(0) = �, 

where 
, � are constants, �(�, �) is a continuous real 
valued function and �(�) ∈ 
[0,1]. 

FRACTIONAL CALCULUS 

Fractional calculus and its applications (the theory 
of derivatives and integrals of any arbitrary real or 
complex order) has importance in several widely 
diverse areas of mathematical physical and 
engineering sciences. It generalizes the ideas of integer 
order differentiation and n-fold integration. Fractional 
derivatives introduce an excellent instrument for the 
description of general properties of various materials 
and processes. This is the main advantage of fractional 
derivatives in comparison with classical integer-order 
models, in which such effects are in fact are neglected. 
The advantages of fractional derivatives become 
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apparent in modeling mechanical and electrical 
properties of real materials, as well as in the 
description of properties of gases, liquids and rocks, 
and in many other fields [16]. 

The class of various types of fractional differential 
equations plays important roles, not only in 
mathematics but also in physics, control systems, 
dynamical systems and engineering to create the 
mathematical modeling of many physical phenomena. 
Naturally, such equations required to be solved. In the 
past three decades, many studies have been conducted 
on fractional calculus and fractional differential 
equations, involving different operators such as 
Riemann-Liouville operators [17], Erdelyi-Kober 
operators [18], Weyl-Riesz operators [19], Caputo 
operators [20] and Grunwald-Letnikov operators [21]. 
The existence of positive solution and multi-positive 
solutions for nonlinear fractional differential equation 
are established and studied [22]. Moreover, by using 
the concepts of the subordination and superordination 
of analytic functions, the existence of analytic 
solutions for fractional differential equations in 
complex domain are suggested and posed in [23,24]. 

One of the most frequently used tools in the 
theory of fractional calculus is furnished by the 
Riemann-Liouville operators (see[21]). The Riemann-
Liouville fractional derivative could hardly pose the 
physical interpretation of the initial conditions 
required for the initial value problems involving 
fractional differential equations. Moreover, this 
operator possesses advantages of fast convergence, 
higher stability and higher accuracy to derive different 
types of numerical algorithms . 

 
Definition 1.The fractional (arbitrary) order integral of 
the function f of order   α  0  is defined by  

��� �(�) = �  
�

�
  (� − �)�−1 

Γ(�) �(�)��. 
When � = 0, we write ��� �(�) = �(�) ∗ �� (�), where 
(∗) denoted the convolution product (see [22]), 
�� (�) = � � −1

Γ(�) , � > 0 and �� (�) = 0, � ≤ 0 and 
�� → �(�) as � → 0 where �(�) is the delta function. 
 
Definition 2. The fractional (arbitrary) order 
derivative of the function � of order 0 ≤ � < 1 is 
defined by  

��� �(�) = �
�� �  

�

�
     (� − �)−�

Γ(1 − �) �(�)�� = �
�� ��1−� �(�). 

 
Remark 1. From Definition 1, and Definition 2, we 
have  

�� �� = Γ(� + 1)
Γ(� − � + 1) �� −� ,   � > −1;   0 < � < 1 

and  

�� �� = Γ(� + 1)
Γ(� + � + 1) �� +� ,   � > −1;   � > 0. 

 
  In this note, we consider the fractional Lane-Emden 
equations of the following form  

�� �(�) + �
� �′(�) + �(�, �) = �(�),    0 <

� ≤ 1, � ≥ 0, 1 < � ≤ 2, (2) 
 with the initial condition  

�(0) = 0,    �′(0) = 0, 
where �(�, �) is a continuous real valued function and 
�(�) ∈ 
[0,1]. 

 

ANALYTIC SOLUTION OF 
FRACTIONAL LAN-EMDEN 

EQUATION   

Solution of ordinary type 

In this section, we have illustrated the 
solution of Eq. (1), which can be found in [25] as 
follows: Consider the integral operator 

 

�� (. ) = �  
�

0
�−� �  

�

0
�� (. )����. 

Applying �−�  on (1) we have  
�(�) = 
 + �� + �� (�(�)) − �� (�(�, �)). 

Assume  
�(�) = 
 + �� + �� (�(�)) 

 

�(�, �(�)) = �−� �  
�

0
(�(�, u))��. 

Thus we have  

�(�) = �(�) + �  
�

0
�(�, �(�)), 

which is nonlinear Volterra integral equation. 
 

Solution of arbitrary type 

In this section, we have illustrated the 
solution of Eq. (2). Assume that  B is a Banach space 
of all continues bounded functions endow with the sup 
norm. By using some properties of the Riemann-
Liouville fractional operators which are given in [21] , 
we have the following result: 

 
Lemma 1. Let � be continues for all 

� ∈ [0,1]. Assume the problem  
�� �(�) + �

� �′ (�) = �(�, �),     
0 < � ≤ 1, � ≥ 0, 1 < � ≤ 2,                (3) 

where  
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               �(�, �) = �(�) − ���, �(�)� then  
 

�(�) = ℎ(�, �(�)) + �� �(�, �(�)), 
where  
                  ℎ(�, �): = �! �(�)

�  and 0 < ! ≤ 1. 
Theorem 1. Let �(�, �) defined in  

Lemma 1. If  
Γ(! + 1) > "�,    0 < ! ≤ 1, 

where � >, " > 0 then Eq.(3) has a solution. 
 

Proof. Define an operator #: ℬ → ℬ 
 
(#�)(�) = ℎ(�, �(�)) + �� �(�, �(�)) 

where ℎ(�, �(�)) defined in Lemma 1. Then we have 
 

|(#�)(�)| = |ℎ(�, �(�)) + �� F(�, �(�))|
≤ |ℎ(�, �(�))| + |�� �(�, �(�))|
≤ �"|�(�)|

Γ(! + 1) + |�(�, �(�))|
Γ(� + 1)

 

 where  

": = 1
� , � ∈ (0,1]. 

 Taking the sup, we obtain  
 

∥ # ∥≤
∥�∥

Γ(� +1)
1 − �"

Γ(! +1)
: = &. 

 
Define the set  thus 

 The Arzela-Ascoli theorem ensures that 
every sequence of functions from  has got a 
uniformly convergent subsequence, and therefore 

 is relatively compact. Schauder's fixed point 
theorem asserts that  has a fixed point. By 
construction, a fixed point of  is a solution of the 
initial value problem (3). 

 

NUMERICAL SOLUTION OF LANE-
EMDEN EQUATION 

In this section, we have illustrated some numerical 
solutions for two classes of Lane-Emden equations. 

 
�′′(�) + 2

� �′(�) = 2(2t2 + 3)�(�),    0 < � ≤ 1 (4) 
 subject to the initial conditions  

�(0) = 1,    �′(0) = 1. 

The exact solution is �(�) = '� 2  [25]. 
 And  

�� �(�) + 2
� �′ (�) = 2(2�2 + 3)�(�),   

  0 < � ≤ 1 (5) 
 

where 1 < � ≤ 2. Eq.(5) has exact solution *� (�� ), 
where *� , is the Mittag-Leffler function, which is 
similar to the exponential function frequently used in 
the solutions of integer-order systems; it is defined as  

*� (-) = /  
∞

5=0
   �5

Γ(5� + 1) 

where � > 0 and Γ is the Gamma function [22]. 
 

Artificial Neural Network  

With an attempt to model, certain capabilities of the 
human’s brain, Warren McCulloch and Walter Pitts 
have established a simplified model of a biological 
neuron in 1943, called the McCulloch-Pitts model, 
consisting of multiple inputs and one output. Neural 
networks have been successfully applied to a variety 
of real world classification tasks in industry, business, 
and sciences [26].           

 In this work, a standard back-propagation neural 
network (NN) is used to estimate the exact solution 
for the given fractional equation. The network 
consists of three layers; the first layer consists of 
neurons that are responsible for input data vectors 
into the neural network. The second layer is a 
hidden layer. This layer allows neural network to 
perform the error reduction, which is necessary to 
successfully achieve the desired output. The final 
layer is the output layer which is determined by the 
size of the set of desired outputs, which represent 
the estimated exact solution. Each possible output is 
represented by a separate neuron. There is one 
output from neural network. The neural network 
structure is shown in Fig. 1. 

 
FIGURE 1.  Neural Network structure 
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FIGURE 2. Regressions analysis (Ordinary case ) 

 
FIGURE 3. Regressions analysis(Fractional case) 

 

  
FIGURE 4. Tested outputs  inputs with the desired targets 

(Ordinary case  ) 
 

FIGURE 5. Tested outputs  inputs with the desired 
targets(Fractional case) 

 
 

Training Phase 

The NN is trained to estimate the exact solution. The 
dataset contains 10 exact solutions for training and 10 
for testing, solved numerically, using ordinary 
case(Eq.4) and fractional case(Eq.5).  
In the training phase of the NN, the weight matrices 
between the input and the hidden and output layers are 
initialized with random values. After repeatedly 
presenting data of the input samples and desired 
targets, we then compared the output with the desired 
outcome, followed by error measurement and weight 
adjustment. This pattern is repeated until the error rate 
of the output layer reaches a minimum value. This 
process is then repeated for the next input value, until 
all values of the input have been processed. The 
activation function used is binary-sigmoid. The value 
of this function ranges between 0 and 1. Whereas, the 
output layer neuron is estimated using the activation 
function that features the linear transfer function. The 
training algorithm used is Gradient descent with 
momentum back propagation. The exact solutions data 
are solved manually by using the giving equation and 
entered as training input data into the NN. The quality 

of the training sets that enter into the network 
determines how well the neural network works. 
 Fig. 2 and 3 show the regressions analysis for both 
approaches ordinary case (Eq.4) and fractional case 
(Eq.5) of the trained network. The regressions analysis 
returns the correlation coefficient R. This coefficient 
equals to 1 in the output and the target for training; 
thus, both output and target are very close, which 
indicates good fit. 
 

Testing Phase 

  In this phase, the dataset for both cases   are prepared 
in the same manner as in training phase. Depending on 
training data, 10 exact solutions dataset that were 
solved numerically, using ordinary case (Eq.4) and 
fractional case(Eq.5) are used to test the proposed 
neural network.  
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Results and Discussions 

The experimental results are presented to show the 
effectiveness of the proposed neural network. The 
training and testing phases were carried out on a 2.33 
GHz Intel (R) Core TM 2Duo CPU 4 GB RAM on 
Windows 7 platform using MATLAB R2010a. The 
Fig.4 and Fig.5 show the estimation network results 
for the testing data for both cases (Ordinary case and 
Fractional case).  Both outputs and targets are very 
close, these results show that, the neural network 
works probably and yields error free results.  
 

CONCLUSION 

In this paper, we had proposed a new approach for 
solving the Lane-Emden equations singular initial 
value problems based on neural network. The results 
achieved, had been compared with the exact 
solution. These results show that, the neural network 
works probably and absolutely no errors were found 
in the outputs. The parallel processing property of 
neural network had reduced the computational time 
which makes this method better than the 
conventional methods. 
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